Abstract

Large-scale magnetic fields affect the scalar modes of the geometry whose ultimate effect is to determine the anisotropies of the Cosmic Microwave Background (CMB in what follows). For the first time, a consistent numerical approach to the magnetized CMB anisotropies is pursued with the aim of assessing the angular power spectra of temperature and polarization when the scalar modes of the geometry and a stochastic background of inhomogeneous magnetic fields are simultaneously present in the plasma. The effects related to the magnetized nature of the plasma are taken into account both at the level of the dynamical equations and at the level of the initial conditions of the Einstein-Boltzmann hierarchy. The temperature and polarization observables are exploited to infer the peculiar signatures of a pre-equality magnetic field. Using the extrapolated best fit to the three year WMAP data the increase and distortions of the first seven peaks in the TT autocorrelations are monitored for different values of the regularized magnetic field intensity and for the physical range of spectral indices. Similar analyses are also conducted for the first few anticorrelation (and corrrelation) peaks of the TE power spectra. Possible interesting degeneracies and stimulating perspectives are pointed out and explored.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.