Abstract

Laminar functional magnetic resonance imaging (fMRI) using the gradient echo (GRE) blood oxygenation level dependent (BOLD) contrast is prone to signal changes arising from large unspecific venous vessels. Alternatives based on changes of cerebral blood volume (CBV) become more popular since it is expected that this hemodynamic response is dominant in microvasculature. One approach to sensitize the signal toward changes in CBV, and to simultaneously reduce unwanted extravascular (EV) BOLD blurring, is to selectively reduce gray matter (GM) signal via magnetization transfer (MT). In this work, we use off-resonant MT-pulses with a 3D FLASH readout to perform MT-prepared (MT-prep) laminar fMRI of the primary visual cortex (V1) at multiple echo times at 7 T. With a GRE-BOLD contrast without additional MT-weighting as reference, we investigated the influence of the MT-preparation on the shape and the echo time dependency of laminar profiles. Through numerical simulations, we optimized the sequence parameters to increase the sensitivity toward signal changes induced by changes in arterial CBV and to delineate the contributions of different compartments to the signal. We show that at 7 T, GM signals can be reduced by 30 %. Our laminar fMRI responses exhibit an increased signal change in the parenchyma at very short TE compared to a BOLD-only reference as a result of reduced EV signal intensity. By varying echo times, we could show that MT-prep results in less sensitivity toward unwanted signal changes based on changes in T2*. We conclude that when accounting for nuclear overhauser enhancement effects in blood, off-resonant MT-prep combined with efficient short TE readouts can become a promising method to reduce unwanted EV venous contributions in GRE-BOLD and/or to allow scanning at much shorter echo times without incurring a sensitivity penalty in laminar fMRI.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call