Abstract
NMR experiments devised to aid in analyses of tissues include magnetization transfer (MT), which can highlight the signals of biological macromolecules through cross-relaxation and/or chemical exchange processes with the bulk 1H water resonance, and high-resolution magic-angle-spinning (HRMAS) methods, akin to those used in solid-state NMR to introduce additional spectral resolution via the averaging of spin anisotropies. This paper explores the result of combining these methodologies, and reports on MT “z-spectroscopy” between water and cell components in excised tissues under a variety of HRMAS conditions. Main features arising from the resulting 1H “MTMAS” experiments include strong spinning sideband manifolds centered at the liquid water shift, high-resolution isotropic features coinciding with aliphatic and amide proton resonances, and a second sideband manifold arising as spinning speeds are increased. Interpretations are given for the origin of these various features, including simulations shedding further light onto the nature of MT NMR signals observed for tissue samples. Concurrently, histological examinations are reported validating the limits of HRMAS NMR procedures to the analysis of tissue samples preserved in a number of different ways.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.