Abstract

MTI has the potential to detect abnormalities in normal-appearing white and gray matter on conventional MR imaging. Early detection methods and disease progression markers are needed in HD research. Therefore, we investigated MTI parameters and their clinical correlates in premanifest and manifest HD. From the Leiden TRACK-HD study, 78 participants (28 controls, 25 PMGC, 25 MHD) were included. Brain segmentation of cortical gray matter, white matter, caudate nucleus, putamen, pallidum, thalamus, amygdala, and hippocampus was performed using FSL's automated tools FAST and FIRST. Individual MTR values were calculated from these regions and MTR histograms constructed. Regression analysis of MTR measures from all gene carriers with clinical measures was performed. MTR peak height was reduced in both cortical gray (P = .01) and white matter (P = .006) in manifest HD compared with controls. Mean MTR was also reduced in cortical gray matter (P = .01) and showed a trend in white matter (P = .052). Deep gray matter structures showed a uniform pattern of reduced MTR values (P < .05). No differences between premanifest gene carriers and controls were found. MTR values correlated with disease burden and motor and cognitive impairment. Throughout the brain, disturbances in MTI parameters are apparent in early HD and are homogeneous across white and gray matter. The correlation of MTI with clinical measures indicates the potential to act as a disease monitor in clinical trials. However, our study does not provide evidence for MTI as a marker in premanifest HD.

Highlights

  • AND PURPOSE: MTI has the potential to detect abnormalities in normal-appearing white and gray matter on conventional MR imaging

  • MTR peak height was reduced in both cortical gray (P ϭ .01) and white matter (P ϭ .006) in manifest HD compared with controls

  • Throughout the brain, disturbances in MTI parameters are apparent in early HD and are homogeneous across white and gray matter

Read more

Summary

Objectives

This study aims to examine MTR measures in a well-defined premanifest and manifest HD population, and to determine associations between MTR and clinical features of HD. By examining MTR in this sample, we aim to advance understanding of the timing of pathophysiological changes in HD and evaluate the suitability of MTI/MTR as a potential biomarker for HD

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.