Abstract

ABSTRACTIn high-speed magnetic flux leakage (MFL) testing, the tested workpieces pass rapidly through magnetizers. Thus, the magnetization time for workpieces is short. Because of the eddy current effect, the magnetic field inside the workpieces cannot instantly reach equilibrium, and if the magnetizing time is insufficient for the field to reach equilibrium, the MFL signals will be changed because of incomplete magnetization. In this article, the magnetization time lag caused by eddy currents and the influence of this lag on high-speed MFL testing is investigated. The time required for magnetic field to reach equilibrium in specimens, including steel bars and pipes, is obtained by theoretical calculations, finite element simulations, and experiments. The results indicate that the time required for a magnetic field inside a specimen to reach equilibrium is in the range of 50–100 ms. Using conventional magnetizers, the defect signals at testing speed of 10 m/s change because the workpiece reaches the detection zone before the magnetic field inside reaches the stable state. A simple solution is to increase the axial length of the magnetizing coil. After this procedure, signals obtained at 0.1 m/s and 10 m/s are almost identical.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.