Abstract
The competition between shape and perpendicular magnetic anisotropies in magnetic thin films gives rise to unusual magnetic behaviors. In ferromagnetic thin films, the presence of an out-of-plane component of the magnetic anisotropy may induce a transition from planar to stripe-like magnetic domains above a critical thickness, . In this article, we present a detailed study of the magnetization switching mechanism in FePt thin films, where this phenomenon is observed. Using micromagnetic simulations and experiments, we found that below the reversal mechanism is well described by the two-phase model while above this thickness the magnetization within each stripe reverses by coherent rotation. We also analyzed the out-of-plane component of the magnetic anisotropy and its temperature dependence, probing that substrate-induced strains are responsible for the abnormal coercive field behavior observed for FePt films with .
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.