Abstract

The effects of shape and geometry of antidot (square, bi-component, and wave-like) lattices (ADLs) on the magnetization reversal processes and magnetic anisotropy has been systematically investigated by magneto-optical Kerr effect based microscopy. Our experimental results were reproduced by micromagnetic simulations, which highlight the qualitative agreement with the experimental results. We have demonstrated that a small antidot in the center of a unit cell in the square ADL is sufficient to induce additional easy axes with large coercive fields. In wave-like patterns, narrow channels connecting smaller and larger antidots (bi-component ADL) further drastically change the anisotropy map, creating the high coercive fields along a wide angular range (90°) of directions parallel to the channels. In simulated results, we have observed formation of periodic domain structures in all ADLs, however, in the case of a wave-like pattern it is most regular and moreover two different periodic patterns are stabilized at different applied magnetic field values. The formation of 360° domain walls were also observed in wave-like ADL where these domains are formed along the lines connecting adjacent larger and smaller antidots, perpendicular to the channels. These findings point out the possibility of exploiting ADLs with complex unit cells in magnonic or spintronic applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.