Abstract

Results of experiments to study the effect of grain size and grain-size distribution on the intrinsic coercivity and the hysteresis loop of sintered Fe-Nd-B magnets are presented. It is shown that the intrinsic coercivity decreases as the average grain size of the magnet is increased. It is also shown that the intrinsic coercivity decreases linearly with the logarithm of the square of the grain size. This is consistent with the predictions made based upon the statistical model developed in Part I. An increase in the sintering temperature leads to an increase in the average grain size, which consequently leads to a narrower hysteresis loop and lower intrinsic coercivity compared to magnets sintered at a lower temperature. It is also shown that a heterogeneous grain-size distribution, such as a bimodal distribution, causes kinks to appear in the second quadrant of the hysteresis loop. By examining magnets with different fractions of large grains, the prediction that the magnitude of the kinks increases with the volume fraction of the large grains, has been verified experimentally.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call