Abstract

The magnetization reversal of individual 2 μm and 5 μm diameter polycrystalline Permalloy rings, with respective widths 0.75 μm and 1 μm, thickness 45 nm, has been investigated by focused magneto-optic Kerr effect (MOKE) magnetometry. Micromagnetic simulation of the reversal in the 2 μm diameter ring reveals that the onion-to-vortex state switching occurs by nucleation and subsequent annihilation of vortex walls that span the width of the ring, and that the vortex-to-reverse-onion state switching occurs by expansion of a reverse domain. The hysteresis loop shows good agreement with the experimental MOKE loop. Measurements of the switching through one-half of a 5 μm diameter ring enable the determination of the circulation of the vortex states accessed during one applied field cycle. The rings switch via one vortex state (either clockwise or anticlockwise) on both downward and upward applied field sweeps. The number of applied field cycles spent switching via one vortex state before changing to switch via the opposite vortex state is random, likely to be due to the history of the spin configuration and thermal fluctuations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call