Abstract

We have investigated the magnetization reversal and magnetoresistance (MR) behavior of a lateral spin-injection device. The device consists of a two-dimensional electron gas (2DEG) system in an InAs quantum well and two ferromagnetic (Ni80Fe20) contacts: an injector (source) and a detector (drain). Spin-polarized electrons are injected from the first contact and propagating through InAs are collected by the second contact. By engineering the shape of the permalloy film distinct switching fields (Hc) from the injector and the collector have been observed by scanning Kerr microscopy and MR measurements. Magneto-optic Kerr effect (MOKE) hysteresis loops demonstrate that there is a range of magnetic field (20–60 Oe), at room temperature, over which magnetization in one contact is aligned antiparallel to that in the other. The MOKE results are consistent with the variation of the magnetoresistance in the spin-injection device.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.