Abstract

Magnetization plateaus are some of the most striking manifestations of frustration in low-dimensional spin systems. We present numerical studies of magnetization plateaus in the fascinating spin-1/2 skewed ladder system obtained by alternately fusing five- and seven-membered rings. This system exhibits three significant plateaus at $m = 1/4$, $1/2$ and $3/4$, consistent with the Oshikawa-Yamanaka-Affleck condition. Our numerical as well as perturbative analysis shows that the ground state can be approximated by three weakly coupled singlet dimers and two free spins, in the absence of a magnetic field. With increasing applied magnetic field, the dimers progressively become triplets with large energy gaps to excited states, giving rise to stable magnetization plateaus. Finite-temperature studies show that $m=1/4$ and $1/2$ plateaus are robust and survive thermal fluctuations while the $m=3/4$ plateau shrinks rapidly due to thermal noise. The cusps at the ends of a plateau follow the algebraic square-root dependence on $B$.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.