Abstract

SQUID magnetometry is applied to study the temperature and magnetic field dependence of magnetization M(T, H) of semiconductor EuS–PbS ferromagnetic multilayers grown on insulating KCl(100) and conducting n-PbS(100) monocrystalline substrates. For low external magnetic fields (of the order of 10 Oe) and PbS spacer layers thinner than about 2 nm, we observe in EuS–PbS–EuS trilayers the strongly nonmonotonic temperature dependence of magnetization with almost zero total magnetic moment below the Curie temperature. The application of the magnetic field of the order of 100 Oe restores the regular monotonic increase of magnetization with decreasing temperature. To explain this M(T,H) dependence we present a model that considers the competition of three (temperature dependent) contributions to the total magnetic energy of the trilayer: the antiferromagnetic interlayer interaction energy, the Zeeman energy, and the energy of in-plane magnetocrystalline anisotropy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.