Abstract
Magnetization jumps (MJs) and the exchange bias (EB) effect are simultaneously observed in the mixed-spin oxide (FeTiO3)0.9-(Fe2O3)0.1 at 2.0 K. Dc and ac susceptibility measurements confirm a reentrant spin glass phase with a partially disordered antiferromagnetic (PDA) state below the irreversibility temperature (Tir = 60 K). Antiferromagnetic (AFM) Fe3+ clusters are nested in AFM Fe2+ lattices forming a triangular lattice, in which 2/3 of the magnetic moments order antiferromagnetically with each other leaving the remaining 1/3 “confused.” This geometric frustration in the triangular lattice leads to a PDA state that is the ground state of the AFM triangular configuration. The PDA state, in the presence of a critical trigger field, evolves into a ferromagnetic (FM) state, and induces the AFM spins of the Fe2+ ions to enter a FM state, resulting in the MJs. Meanwhile, the FM spins of Fe2+ can serve as the pinned phase, and the AFM spins of Fe3+ can serve as the pinning phase, resulting in the EB effect. Thus, we point out that the PDA state is very likely to be at the origin of the MJs and the EB effect.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.