Abstract

The magnetization dynamics in a thin NiFe film was investigated by applying short in-plane magnetic field pulses while probing the response using a time-resolved magneto-optical Kerr effect setup. In-plane magnetic field pulses, with duration shorter than the relaxation of the system, were generated using a photoconductive switch and by subsequent propagation of current pulses along a waveguide. The field pulses with typical rise and decay times of 10–60 and 500–700 ps, respectively, have a maximum field strength of 9 Oe, by which Permalloy elements of 16 nm thickness and lateral dimensions of 10×20 μm were excited. The observed coherent precession of a ferromagnetic NiFe system had precession frequencies of several GHz and relaxation times on a nanosecond time scale. The dynamic properties observed agree well the Gilberts’s precession equation and the static magnetic properties of the elements

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call