Abstract

We study the magnetic damping in the simplest of synthetic antiferromagnets, i.e. antiferromagnetically exchange-coupled spin valves in which applied magnetic fields tune the magnetic configuration to become noncollinear. We formulate the dynamic exchange of spin currents in a noncollinear texture based on the spindiffusion theory with quantum mechanical boundary conditions at the ferrromagnet|normal-metal interfaces and derive the Landau-Lifshitz-Gilbert equations coupled by the static interlayer non-local and the dynamic exchange interactions. We predict non-collinearity-induced additional damping that can be sensitively modulated by an applied magnetic field. The theoretical results compare favorably with published experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.