Abstract

The magnetization curve and magnetization correlation function are calculated for a ferromagnetic chain of single-domain nanoparticles with a randomly oriented anisotropy axis for different ratios between the exchange correlation and anisotropy energies. It is shown that the coercive force decreases as the exchange correlations increase. For strong exchange correlations, the magnetization curve is described by the following three successive magnetization processes as the applied field is increased: (i) nonuniform rotation of the magnetization of stochastic domains, (ii) collapse of the magnetic solitons, and (iii) nonuniform rotation of exchange-correlated magnetization vectors of the nanoparticles. For high fields, the calculated correlation function of the transverse magnetization components coincides with that predicted from linear theory. At low and zero fields, the main parameters of the correlation function (the variance and correlation radius) tend to certain finite values rather than diverge (as is the case in linear theory). The irreversible variation in the magnetization at low fields (the hysteresis loop) and the hysteresis of the main parameters of the correlation function are calculated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call