Abstract

A magnetite (Fe3O4) nanoparticle/chiral nematic liquid crystal (N*-LC) composite was prepared and filled into a planar treated cell. The Fe3O4 nanoparticles had been modified by oleic acid so that they could be better dispersed in the composite. When a magnetic field was scanned on the outer surface of the cell locally, Fe3O4 nanoparticles moved towards the inner surface of the cell correspondingly, and the black expected information was displayed. When the magnet was applied to the opposite outer surface, the information was erased. After polymer network walls were prepared in the composite, the resolution of the information displayed increased. Then, through the formation of hydrogen bonds between the nanoparticles and chiral pyridine compound (CPC) doped in the composite, the pitch length of the N*-LC could be adjusted by altering the intensity of the applied magnetic field. The composite doped with CPC could potentially be used as a material for a type of reflective colour paper with magnetically controllable characteristics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call