Abstract
Among pollutants, nanoparticles (NPs) consist a potential environmental hazard, as they could possibly harm the aquatic and terrestrial ecosystems while having unpredictable repercussions on human health. Since monitoring the impact of NPs on aquatic and terrestrial life is challenging, due to the differential sensitivities of organisms to a given nanomaterial, the present study examines magnetite nanoparticles’ mediated toxicity in different animal models, representing distinctive environments (terrestrial and aquatic). Oxidative, proteolytic and genotoxic effects were evaluated on the hemocytes of the snail Cornu aspersum; in addition to those, apoptotic effects were measured in gills and liver of the zebrafish Danio rerio, and the prussian carp Carassius gibelio. All biochemical parameters studied increased significantly in animals after 8 days exposure to NPs. Inter-species and inter-tissues differences in responses were evident. Our results suggest a common toxicity response mechanism functioning in the tissues of the three animals studied that is triggered by magnetite NPs. The simultaneous use of these parameters could be established after further investigation as a reliable multi-parameter approach for biomonitoring of terrestrial and aquatic ecosystems against magnetite nanoparticles. Additionally, the results of our study could contribute to the design of studies for the production and rational utilization of nanoparticles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.