Abstract

We herein report the surface modification of magnetite nanoparticle (MNP) with the (co)polymer of poly(ethylene glycol) methyl ether methacrylate (PEGMA) and/or diethylamino ethyl methacrylate (DEAEMA) via atom transfer radical polymerization (ATRP) for use as anion exchanger solid support for detection of DNA sequence using peptide nucleic acid (PNA) probe. Molar ratio of the PEGMA:DEAEMA (co)polymer was systematically varied to tune the positive charges on the particle surface. Kinetic studies of the (co)polymerizations were investigated via 1HNMR to disclose the relative reactivity of the (co)polymers in the reaction. Zeta potential of the (co)polymer-grafted MNP was analyzed by photo correlation spectroscopy (PCS). Transmission electron microscopy (TEM) and PCS indicated an improvement in the particle dispersibility in water upon quaternization of the DEAEMA entities grafted on the particle surface. From the preliminary results, these (co)polymer-grafted MNPs can be used as a nanosolid support to differentiate between full match and single-base mismatch DNA sequences using an acpcPNA probe. These novel cationic MNPs might be efficiently applicable for use as a magnetically guidable tool for detection of DNA sequences.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call