Abstract
The magnetite micropolar nanofluid ( Fe3O4 /water) oblique flow in the presence of mixed convection and magnetic field is considered in the present investigation. Magnetite nanoparticles are added to water in order to examine the temperature and velocity characteristics of the flow. Appropriate transformations are employed to obtain the governing equations. Numerical solutions are attained by the Range-Kutta-Fehlberg integration scheme with the shooting method. Characteristics of flow velocity profiles, temperature distribution, micro-rotation, shear stress and heat flux are remarkably influenced by magnetic parameter, magnetite nanoparticles volume fraction and mixed convection parameter. The obtained results indicate that the shear stress at the wall decreases but the local heat flux increases with increase in the nanoparticles volume fraction. Moreover, an increase in the magnetic field strength consequently enhances the shear stress at the surface but decreases the local heat transfer rate at the surface.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.