Abstract

A magnetic mixed iron oxide, magnetite (Fe3O4), was synthesized in the laboratory and characterized before its use as sorbent for arsenic removal. The characterization techniques used were X-ray diffraction (XRD), specific surface area, zeta potential and particle size measurements. The sorbent was applied for arsenic removal, without any pre or post treatment, from groundwater. The efficiency of sorption can only be improved by understanding the sorbent–sorbate interaction. For onsite monitoring of the sorbent-sorbate interaction, an electrochemical investigation using cyclic voltammetry (CV) measurement was developed. The study confirmed that the sorption of As(III) on Fe3O4 is dynamic (reversible) whereas that of As(V) is static (irreversible) in nature. Detailed investigation after the sorption was carried out utilizing X-ray photoelectron spectroscopy (XPS) measurement. The complexation of As(III)-Fe3O4 and As(V)-Fe3O4 without any redox transformation was evident from the XPS data. By careful examination of the results, a mechanism of arsenic removal by Fe3O4 was proposed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.