Abstract
Using the bio-electrochemical methods for the restoration of high algae sediments is full of potential and challenges. How to promote extracellular electron transfer (EET) process in microbial fuel cells (MFC) is the key bottleneck. The study had explored the potential application of magnetite on accelerating electron transfer for improving the output of MFC and sediment pollution remediation. The results indicated that the organic matter degradation rate showed a remarkable increase of 27.45 %, and the voltage output was approximately 1.68 times higher compared to the MFC configured with regular sediment. Abundant electroactive bacteria (EABs), such as Geobacter and Burkholderiaceae, and fermentative bacteria were responsible for these results, accompanied by the enhanced fluorescence of humic substances (HS), increased concentration and activity of cytochrome C (25.05 % and 21.12 %), as well as elevated extracellular polymeric substance content. Moreover, the intrinsic EET mechanisms among Fe-oxides, HS, and EABs were explored. According to the electrochemical analysis and substance transformation, the EET process involved four stages: magnetite-enhanced direct electron transfer via strong conductivity, iron respiration mediating electron transfer to the electrode, the model quinone substance acting as an electron shuttle facilitating EET and iron reduction, and iron cycling mediating electron transfer. This study provides an effective strategy for pollution remediation in algal-rich sediment, which was beneficial for the harmless treatment and resource utilization of both algae and sediment, simultaneously.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.