Abstract

Magnetic properties of lower crustal rocks produce anomalies seen in satellite, aeromagnetic, and ground studies, and are assumed to be responsible for observed long wave-length anomalies (LWA) of +/− 20 nT. The soon to be launched SWARM satellites will provide extensive data on the magnetization of the lower to middle crust. In anticipation of this event we are investigating magnetic properties in a superbly exposed section of lower crust in northern Saskatchewan. The Athabasca Granulite Terrain (AGT) is a complex region of felsic and mafic lower crustal rocks, part of the Snowbird Tectonic zone, stretching NE–SW across the Canadian Shield. The AGT is composed of a sequence of rocks identified as lower crustal in origin by their high pressure (> 1.0 GPa) and high temperature (~ 800 °C) metamorphism, dated at 2.6 Ga and 1.9 Ga, with uplift and exhumation at 1.85–1.80 Ga. The AGT is characterized by low (negative) aeromagnetic anomalies with distinct large positive anomalies in the southern and central regions. The Chipman Domain, on the east side, consists of tonalites, mafic granulites, and granite, intruded by the Chipman dike swarm at ~ 1.9 Ga, where anomalies cut across mapped lithologic boundaries. Susceptibility measurements from both field and lab readings range over several orders of magnitude, from 1 × 10 − 5 to 3 × 10 − 1 SI, with higher values related to both mafic granulite and some tonalite samples. Remanence values also show considerable variability, from 0.1 mA/m to 90 A/m, with the weakest magnetization found in the Chipman dikes and the Fehr granite. Forty samples out of 89 have Koenigsberger ratios greater than 1, but low initial remanence limits its influence on anomalies. Hysteresis and low temperature measurements identify magnetite as the predominant iron oxide. This section of lower crustal rocks has paramagnetic granites and dikes, with ferromagnetic mafic granulites and bimodal tonalites, defined by geographic location. • Distinct aeromagnetic anomalies are seen over the Athabasca granulite terrain. • Paramagnetic Fehr granite and Chipman dikes are unable to produce anomalies. • Bimodal Chipman tonalite shows both paramagnetic and ferromagnetic behavior. • Mafic granulites have high susceptibility and remanence but only minor occurrences.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.