Abstract
We present extensive first principles density functional theory (DFT) calculations dedicated to analyze the magnetic and electronic properties of small V n clusters (n = 1, 2, 3, 4, 5, 6) embedded in a Cu fcc matrix. We consider different cluster structures such as: (i) a single V impurity, (ii) several V2 dimers having different interatomic distance and varying local atomic environment, (iii) V3 and (iv) V4 clusters for which we assume compact as well as 2- and 1-dimensional atomic configurations and finally, in the case of the (v) V5 and (vi) V6 structures we consider a square pyramid and a square bipyramid together with linear arrays, respectively. In all cases, the V atoms are embedded as substitutional impurities in the Cu network. In general, and as in the free standing case, we have found that the V clusters tend to form compact atomic arrays within the cooper matrix. Our calculated non spin-polarized density of states at the V sites shows a complex peaked structure around the Fermi level that strongly changes as a function of both the interatomic distance and local atomic environment, a result that anticipates a non trivial magnetic behavior. In fact, our DFT calculations reveal, in each one of our clusters systems, the existence of different magnetic solutions (ferromagnetic, ferrimagnetic, and antiferromagnetic) with very small energy differences among them, a result that could lead to the existence of complex finite-temperature magnetic properties. Finally, we compare our results with recent experimental measurements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.