Abstract

We study the static and dynamic magnetic properties of ultracold quantum gases, in particular the spinor physics of F = 1 and F = 2 Bose-Einstein condensates of 87Rb atoms. Our data lead to the conclusion, that the F = 2 ground state of 87Rb is polar, while we find the F = 1 ground state to be ferromagnetic. The dynamics of spinor systems is linked to an interplay between coherent mean-field interactions, losses and interactions with atoms in the thermal cloud. Within this rich parameter space we observe indications for coherent spinor dynamics and novel thermalization regimes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call