Abstract

We describe the enhanced magnetic transition temperatures $T_c$ of two-component fermions in three-dimensional layered Lieb lattices, which are created in cold atom experiments. We determine the phase diagram at half-filling using the dynamical mean-field theory. The dominant mechanism of enhanced $T_c$ gradually changes from the (delta-functional) flat-band to the (logarithmic) Van Hove singularity as the interlayer hopping increases. We elucidate that the interaction induces an effective flat-band singularity from a dispersive flat (or narrow) band. We offer a general analytical framework for investigating the singularity effects, where a singularity is treated as one parameter in the density of states. This framework provides a unified description of the singularity-induced phase transitions, such as magnetism and superconductivity, where the weight of the singularity characterizes physical quantities. This treatment of the flat-band provides the transition temperature and magnetization as a universal form (i.e., including the Lambert function). We also elucidate a specific feature of the magnetic crossover in magnetization at finite temperatures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.