Abstract

Similar to atoms and nuclei, semiconductor quantum dots exhibit the formation of shells. Predictions of magnetic behavior of the dots are often based on the shell occupancies. Thus, closed-shell quantum dots are assumed to be inherently nonmagnetic. Here, we propose a possibility of magnetism in such dots doped with magnetic impurities. On the example of the system of two interacting fermions, the simplest embodiment of the closed-shell structure, we demonstrate the emergence of a novel broken-symmetry ground state that is neither spin singlet nor spin triplet. We propose experimental tests of our predictions and the magnetic-dot structures to perform them.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.