Abstract

In order to rationalize and predict the behavior of compounds containing 5d transition metal ions, an understanding of the local moments and superexchange interactions from which their magnetic properties are derived is necessary. The magnetic and electrical properties of the ferrimagnetic double perovskites Ca2CoOsO6 and Ca2NiOsO6 studied here provide critical insight toward that goal. First-principles density functional theory (DFT) calculations indicate, and experimental measurements confirm, that the Os(VI) moments are directed antiparallel to the Co/Ni moments. X-ray magnetic circular dichroism (XMCD) measurements reveal that the orbital moment on osmium has a magnitude that is approximately 30% of the spin moment, and the two contributions oppose each other. Both the size and direction of the orbital moment are confirmed by the DFT calculations. The size of the Os(VI) total moment is predicted to be 0.6–0.7 μB by DFT calculations. The ferrimagnetic ground state is stabilized by strong antiferromagne...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.