Abstract

We have investigated the electronic structure and magnetic properties of cobalt (Co)- or nickel (Ni)-doped hexagonal boron nitride (h-BN) monolayer using density functional theory calculations. The h-BN monolayer without any doping is a nonmagnetic insulator. Our studies show that isolated Co or Ni atom can both induce the local magnetic state in h-BN monolayer. And the impurity energy levels will be formed in the band gap. Results of our first-principle calculations reveal that isolated Co atom can result in a magnetic moment of 3.57 μ B, while the Ni atom is 0.87 μ B. And the magnetic moments mainly come from d orbitals of the doped atoms. The studies of magnetic coupling show that the two Co atoms at different distances in h-BN monolayer do not always couple ferromagnetically. When the distances are 2.504 and 6.625 A, the spins induced by the two Co atoms will form antiferromagnetic ground states. While the two Ni atoms at different distances in the monolayer always couple ferromagnetically. So our results imply that the Ni-doped h-BN is more suitable for spintronic material than Co doping. These results are useful for spintronic application.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.