Abstract

Monolith-based in-tube solid phase microextraction (MB/IT-SPME) has received wide attention because of miniaturization, automation, expected loading capacity, and environmental friendliness. However, the unsatisfactory extraction efficiency becomes the main disadvantage of MB/IT-SPME. To overcome this circumstance, magnetism-enhanced MB/IT-SPME (ME-MB/IT-SPME) was developed in the present work, taking advantage of magnetic microfluidic principles. First, modified Fe3O4 nanoparticles were mixed with polymerization solution and in situ polymerized in the capillary to obtain a magnetic monolith extraction phase. After that, the monolithic capillary column was placed inside a magnetic coil that allowed the exertion of a variable magnetic field. The effects of intensity of magnetic field, adsorption and desorption flow rate, volume of sample, and desorption solvent on the performance of ME-MB/IT-SPME were investigated in detail. The analysis of six steroid hormones in water samples by the combination of ME-MB/IT-SPME with high-performance liquid chromatography with diode array detection was selected as a paradigm for the practical evaluation of ME-MB/IT-SPME. The application of a controlled magnetic field resulted in an obvious increase of extraction efficiencies of the target analytes between 70% and 100%. The present work demonstrated that application of different magnetic forces in adsorption and desorption steps can effectively enhance extraction efficiency of MB/IT-SPME systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.