Abstract

In this talk I will survey our recent experimental results in the detection and manipulation of magnetism at the spatial limit. Our experiments rely on atom manipulation techniques and scanning tunneling microscopy at low temperatures to enable atomic-scale imaging and control. We have observed "quantum mirages" in focusing devices of order 10 nanometers in size, built by assembling structures out of individual atoms. We have directly imaged the spin perturbations due to isolated magnetic moments on a metal surface. The detection of this localized magnetism can then be utilized in a type of teleportation experiment, in which the spectroscopic signature of an atom is sampled and projected to a remote location by means of a surrounding sea of electrons confined in an engineered nanostructure. The quantum mirage thus cast by a single magnetic atom can be coherently refocused at a distinct point where it is detected as a phantom atom around which the electronic structure mimics that at the real atom. Once materialized, this phantom can interact with real matter in intriguing ways. We have constructed other nanoscale magnetic structures which either elucidate the coupling between isolated moments or provide a mechanism for controlling and exploiting spin coupling over long distances. We have also been developing novel communication methods based on the fundamental effects we have discovered.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.