Abstract

Results of ab initio study of magnetism and transport properties of charge carriers in zigzag graphene nanoribbons (ZGNR) on hexagonal boron nitride (h-BN(0001)) substrate are presented within the density functional theory framework. Peculiarities of the interface band structure and its role in the formation of magnetism and transport properties of the ZGNR/h-BN(0001) heterostructure have been studied using two different density functional approximations. The effect of the substrate and graphene nanoribbons width on the low-energy spectrum of π-electrons, local magnetic moments on atoms of interface, and charge carriers mobility in the ZGNR/h-BN(0001) heterostructures have been established for the first time. The regularity consisting in the charge carrier mobility growth with decrease of dimers number in nanoribbon was also established. It is found that the charge carriers mobility in the N-ZGNR/h-BN(0001) (N—number of carbon (C) dimers) heterostructures is 5% higher than in freestanding ZGNR.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call