Abstract

An anhydrous copper carboxylate compound of formula [Cu(trans-2-butenoate)(2)](n) has been characterized. X-ray analysis reveals a structure built by paddlewheel units bridged by pairs of Cu...O axial bonds to give infinite chains arranged in a new topological motif. Susceptibility measurements in the 10-300 K temperature range, and isothermal magnetization curves at 2, 5, 10, and 50 K with fields up to 5 T, were obtained. Electron Paramagnetic Resonance (EPR) spectra of powder samples were measured at 33.9 GHz at 300 K, and at 9.60 GHz at temperatures in the range 90 <or= T <or= 350 K. Fitting the susceptibility data to a chain model of alternating paddlewheel and [Cu(mu-O)(2)Cu] dinuclear units yielded exchange interactions J(1) = -330.6(1) cm(-1) and J(2) = 5.9(2) cm(-1). The EPR spectra reflect the usual antiferromagnetic dinuclear behavior, with zero field splitting parameters of the excited spin triplet, D = -0.329(3) cm(-1) and E approximately 0, plus a central peak not expected for isolated dinuclear units. We interpret this peak as arising from the stochastic spin dynamics of the chain introduced by exchange couplings between spins in neighbor dinuclear units, which averages out the zero field splitting. Interactions of the units with the rest of the chain acting as a spin bath give rise to a quantum transition between localized dinuclear states and states of the spin chain. This effect competes with the condensation of the antiferromagnetic dinuclear units into the singlet ground state, producing a characteristic temperature dependence of the shape of the powder EPR spectra. We interpret these features in terms of basic theories of magnetic resonance in coupled spin systems applied to the chain array of dinuclear units.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.