Abstract

Nanostructured MnyGa ribbons with varying Mn concentrations including Mn1.2Ga, Mn1.4Ga, Mn1.6Ga, and Mn1.9Ga were prepared using arc-melting and melt-spinning followed by a heat treatment. Our experimental investigation of the nanostructured ribbons shows that the material with y = 1.2, 1.4, and 1.6 prefers the tetragonal L10 structure and that with y = 1.9 prefers the D022 structure. We have found a maximum saturation magnetization of 621 emu/cm3 in Mn1.2Ga which decreases monotonically to 300 emu/cm3 as y reaches 1.9. Although both the L10- and D022-MnyGa samples show a high Curie temperature (Tc) well above room temperature, the value of Tc decreases almost linearly from 702 K for Mn1.9Ga to 551 K for Mn1.2Ga. All the ribbons are metallic between 2 K and 300 K but the Mn1.2Ga also shows a resistance minimum near 15 K. The observed magnetic properties of the MnyGa ribbons are consistent with the competing ferromagnetic coupling between Mn moments in the regular L10-MnGa lattice sites and antiferromagnetic coupling with excess Mn moments occupying Ga sites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.