Abstract
Frustrated lanthanide oxides with dense magnetic lattice and suppressed ordering temperature have potential applications in cryogenic magnetic refrigeration. Herein, the crystal structure, magnetic properties, magnetic phase transition (MPT) together with magnetocaloric effect (MCE) of LnOF (Ln = Gd, Dy, Ho, and Er) compounds were investigated. Crystallographic study shows that these compounds crystallize in the centrosymmetric space group Rm with an ideal triangular lattice. No long-range magnetic ordering is observed above 2 K for LnOF (Ln = Gd, Ho, and Er). However, DyOF compound undergoes an MPT from paramagnetic (PM) to antiferromagnetic (AFM) at the Néel temperature (TN ≈ 4 K). Considerable reversible MCE is observed in these triangular-lattice compounds. Under the magnetic field change (μ0ΔH) of 0–2 T, the maximum values of magnetic entropy change (–ΔSmax M) of them are 6.1, 9.4, 12.7, and 14.1 J/(kg·K), respectively. Interestingly, the value of ErOF with Ising-like spin is 2.3 times that of GdOF, which provides an approach for exploring magnetic refrigerants with excellent low-field cryogenic magnetocaloric effect.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.