Abstract

A three-dimensional, Fast-Fourier-Transformed (3D-FFT) micromagnetic simulation was employed to study the magnetization reversal mechanisms in cylindrical nickel nanobars possessing magnetic vortices. Individual Ni nanobars of height 150–250 nm with aspect ratio varying from 2.1 to 2.5 were considered, all of them supporting magnetic vortices domains. Magnetization reversal in these nanobars involves the vortex-creation–annihilation (VCA) mechanism with an inversion symmetry feature observed mid-way during reversal process. The effect of incidence angle of externally applied field on overall magnetization reversal process is examined in detail. The corresponding variations in coercivity, squareness, exchange energy and vortex parameters are described by the micromagnetic study that can shed insights for building practical Ni nanobars magnetic nanostructures/devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call