Abstract

Magnetic-plasmonic FePt@Ag core-shell nanoparticles (NPs) with different Ag shell thicknesses were successfully synthesized using a seed-mediated method. They presented not only localized surface plasmon reso- nance in the visible region, but also superparamagnetic behavior at room temperature. When normalized by the weight of FePt, the saturation magnetization of the FePt@Ag NPs was found to be higher than that of FePt NPs, suggesting that the Ag shell effectively passivated the FePt NP surfaces, avoiding the direct interaction between the FePt core and surface capping ligands that typically forms a magnetically dead layer in FePt NPs. Despite the high colloidal stability and the small size of the FePt@Ag NPs, the NPs were easily separated using a permanent magnet. The surface enhanced Raman scattering (SERS) activity of the FePt@Ag NPs was then examined using thiophenol as a Raman reporter molecule and was found to be equivalent to that of Ag NPs. Moreover, the SERS activity of the FePt@Ag NPs was enhanced when a mag- netic field was applied during the preparation of the SERS substrate (FePt@Ag NP film). These FePt@Ag NPs hold promise as dual-functional sensing probes for environmen- tal and diagnostic applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.