Abstract

Spin-correlated radical pairs are the short-lived intermediates of the primary energy conversion steps of photosynthesis. In this paper, we develop a comprehensive model for the spin-polarized electron paramagnetic resonance (EPR) spectra of these systems. Particular emphasis is given to a proper treatment of the alignment of the photosynthetic bacteria by the field of the EPR spectormeter. The model is employed to analyze time-resolved W-band (94 GHz) EPR spectra of the secondary radical pair P700+A1− in photosystem I formed by photoexcitation of the deuterated and15N-substituted cyanobacteriumSynechococcus lividus. Computer simulations of the angular-dependent EPR spectra of P700/+A1/− provide values for the order parameter of the cyanobacterial cells and for the orientation of the membrane normal in a molecular reference system. The order parameter from EPR compares favorably with corresponding data from electron microscopy obtained for theS. lividus cells under similar experimental conditions. It is shown that high-field EPR of a magnetically aligned sample in combination with the study of quantum beat oscillations represents a powerful structural tool for the short-lived radical pair intermediates of photosynthesis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.