Abstract

NMR spectroscopy is well known for its superb resolution, especially at high applied magnetic field. However, the sensitivity of this technique is very low. Liquid-state low-concentration photo-chemically-induced dynamic nuclear polarization (LC-photo-CIDNP) is a promising emerging methodology capable of enhancing NMR sensitivity in solution. LC-photo-CIDNP works well on solvent-exposed Trp and Tyr residues, either in isolation or within proteins. This study explores the magnetic-field dependence of the LC-photo-CIDNP experienced by two tryptophan isotopologs in solution upon in situ LED-mediated optical irradiation. Out of the two uniformly 13C,15N-labeled Trp (Trp-U-13C,15N) and Trp-α-13C-β,β,2,4,5,6,7-d7 species employed here, only the latter bears a quasi-isolated 1Hα-13Cα spin pair. Computer simulations of the predicted polarization due to geminate recombination of both species display a roughly bell-shaped field dependence. However, while Trp-U-13C,15N is predicted to show a maximum at ca. 500 MHz (11.7 T) and a fairly weak field dependence, Trp-α-13C-β,β,2,4,5,6,7-d7 is expected to display a much sharper field dependence accompanied by a dramatic polarization increase at lower field (ca. 200 MHz, 4.7 T). Experimental LC-photo-CIDNP studies on both Trp isotopologs at 1μM concentration, performed at selected fields, are consistent with the theoretical predictions. In summary, this study highlights the prominent field-dependence of LC-photo-CIDNP enhancements () experienced by Trp isotopologs bearing a quasi-isolated spin pair.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.