Abstract
Light shifts induced in the electronic and shallow on-center donor states in spherical semiconductor quantum dots, including magnetic field effects, are theoretically investigated. The interaction of light with the spherical GaAs–(Ga, Al)As quantum dot is treated within a dressed-band approach in which the Kane band structure scheme is used to model the GaAs bulk semiconductor whereas the dressing by the laser field is treated through the renormalization of the GaAs energy gap and conduction/valence effective masses. This nonperturbative approach is valid far from resonances and has been successfully adopted for other confined semiconductor heterostructures. The discrete nature of the electronic and impurity states, characteristic of quantum dot systems, and the possibility of adding extra confining effects by laser and applied magnetic fields opens up a promising route of applicability and/or manipulation of quantum-dot states in recent quantum-computer proposals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.