Abstract

In many microsystem applications, a nanometric surface quality is crucial to the performance of a device. Soft abrasive flow machining (SAFM) is capable of finishing surfaces at very fine scale with complex geometries since, unlike traditional flow machining processes, abrasive grains are carried by a very low viscosity fluid. Several empirical studies have been done to ensure final high quality surfaces by enhancing the performance of SAFM. However, the present study aims to propose a consistent numerical approach which can handle the fluid-structure interface problems as well as surface erosion to model SAFM and help to gain deeper understanding of the process. Moreover, the approach is employed to investigate the effect of an external magnetic field on the performance of the machining process. All phases, namely carrier fluid, abrasive grains and workpiece, and their interactions are fully resolved by using smoothed particle hydrodynamics. The abrasive grains are modeled by particles that are rigidly moved together. The approach is used to study the surface finishing of a Polymethyl Methacrylate-based microchannel under external magnetic fields. Results show that a magnetic field of suitable strength can considerably improve the material removal rate and hence enhance the performance of SAFM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.