Abstract
Near-field radiative heat transfer (NFRHT) is strongly related with many applications such as near-field imaging, thermo-photovoltaics and thermal circuit devices. The active control of NFRHT is of great interest since it provides a degree of tunability by external means. In this work, a magnetically tunable multiband NFRHT is revealed in a system of two suspended graphene sheets at room temperature. It is found that the single-band spectra for $B=0$ split into multiband spectra under an external magnetic field. Dual-band spectra can be realized for a modest magnetic field (e.g., $B=4\phantom{\rule{0.16em}{0ex}}\mathrm{T}$). One band is determined by intraband transitions in the classical regime, which undergoes a blue shift as the chemical potential increases. Meanwhile, the other band is contributed by inter-Landau-level transitions in the quantum regime, which is robust against the change of chemical potentials. For a strong magnetic field (e.g., $B=15\phantom{\rule{0.16em}{0ex}}\mathrm{T}$), there is an additional band with the resonant peak appearing at near-zero frequency (microwave regime), stemming from the magnetoplasmon zero modes. The great enhancement of NFRHT at such low frequency has been little reported. This work may pave a way for multiband thermal information transfer based on atomically thin graphene sheets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.