Abstract
Birefringence is a fundamental optical property that can induce phase retardation of polarized light. Tuning the birefringence of liquid crystals is a core technology for light manipulation in current applications in the visible and infrared spectral regions. Due to the strong absorption or instability of conventional liquid crystals in deep-ultraviolet light, tunable birefringence remains elusive in this region, notwithstanding its significance in diverse applications. Here we show a stable and birefringence-tunable deep-ultraviolet modulator based on two-dimensional hexagonal boron nitride. It has an extremely large optical anisotropy factor of 6.5 × 10-12 C2 J-1 m-1 that gives rise to a specific magneto-optical Cotton-Mouton coefficient of 8.0 × 106 T-2 m-1, which is about five orders of magnitude higher than other potential deep-ultraviolet-transparent media. The large coefficient, high stability (retention rate of 99.7% after 270 cycles) and wide bandgap of boron nitride collectively enable the fabrication of stable deep-ultraviolet modulators with magnetically tunable birefringence.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.