Abstract

In our laboratory, Magnetically Suspended Pellet (MSP), which is a Ni-coated Glass Micro Balloon (Ni-GMB) suspended in non-contact fashion in a vacuum chamber, has been studied. Three items are described in this paper. The first section presents the development of Magnetically Suspension System (MSS). The second is given about the method of horizontal damping of MSP using optical forces or electrical force. Optical forces are assumed to be the radiometric force and the photon force. The photon force is larger than the radiometric one at pressure below 28mPa. We want to develop another method using electric force. We can ascertain that the MSP is charged and moved in the electric field.In the third section, we propose novel methods to measure the specific susceptibility of a Ni-GMB and the thickness of a Ni thin film. The specific susceptibility of Ni-GMB K<SUB>m</SUB> is measured by observing the trajectory of Ni- GMB immersed in an oil bath. It is found that the K<SUB>m</SUB> is 9.75 at room temperature. The other method has been developed for the measurement of thickness of a Ni thin film. The method is that a base plane is made on the Ni thin film by pulsed laser ablation first, and next the thickness is measured referred to this base plane by multiple beam interferometry. Our proposed method can effectively give the thickness corresponding to that obtained from the quartz crystal monitor within measurement error with the inferred uniformity less than 5 percent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.