Abstract

To develop highly efficient and conveniently separable iron containing catalysts is crucial to remove recalcitrant organic pollutants in wastewater through a heterogeneous Fenton-like reaction. A maghemite/montmorillonite composite was synthesized by a coprecipitation and calcination method. The physiochemical properties of catalysts were characterized by XRD, TEM, nitrogen physisorption, thermogravimetric analysis/differential scanning calorimetry (TG/DSC), zeta potential, and magnetite susceptibility measurements. The influence of calcination temperatures and reaction parameters was investigated. The calcined composites retain magnetism because the presence of montmorillonite inhibited the growth of γ-Fe2O3 nanoparticles, as well as their phase transition. The catalytic activities for phenol degradation were significantly enhanced by calcinations, which strengthen the interaction between iron oxides and aluminosilicate framework and result in more negatively charged surface. The composite (73m2/g) calcined at 350°C had the highest catalytic activities, with more than 99% phenol reduction after only 35min reaction at pH 3.6. Simultaneously, this catalyst exhibited high stability, low iron leaching, and magnetically separable ability for consecutive usage, making it promising for the removal of recalcitrant organic pollutants in wastewater.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call