Abstract

A new method was reported for preparing a magnetically responsive superhydrophobic surface by electrostatic air spray deposition (EASD) and magnetic induction. The mixture was fully atomized under the combined action of the electrostatic field and the high-speed airflow field, and a dense array of micropillars was formed. The atomization mechanism of EASD was explored. The distribution and physical parameters of the micropillars were evaluated and counted. Switchable adhesion characteristics of the surface and the reversibility in 10 cycles were examined. The influences of different electrostatic voltages, component concentration, spray distance, air pressure, and magnetic field intensity on the surface morphology and hydrophobicity were analyzed. The prepared surface can be reversibly transformed between the high-adhesion state (with a contact angle of 108°) and the low-adhesion state (with a contact angle of 154°) by on/off switching of an external magnetic field. After a 2.2 kPa pressure load was applied, the surface contact angle was 144° with an applied magnetic field of 0.4 T. After heated at 90 °C for more than 90 min, the surface can almost obtain superhydrophobicity (with a contact angle of 148°) in the absence of a magnetic field. By utilizing the switchable surface adhesion characteristics, various kinds of droplet transmissions were realized. When the cured surface was spray-coated with carbon nanoparticles (CNPs), active droplet manipulation can be achieved by simply moving the magnet. The advantages of this method include a simple preparation process without chemical surface modification.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.