Abstract

A new Fe3O4/poly(є-caprolactone) (PCL) magnetite nanocomposite was fabricated and used as a sorbent for magnetically mediated PCL microspheres solid-phase extraction (MM-PCL-SPE) followed by gas chromatography-flame ionization detection (GC-FID) for monitoring of progesterone (PGN) hormone in biological and environmental matrices, namely blood serum, tap water, urine, and hospital wastewater. The nanomagnetite core of the sorbent was synthesized by a co-precipitation method. Magnetic nanoparticles (MNPs) were then microencapsulated with PCL microspheres using emulsion polymerization. The nanocomposite was characterized by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). The magnetite sorbent can be effectively dispersed in aqueous solution and attracted to an external magnetic field. The MM-PCL-SPE process for PGN assay involved (a) dispersion of the sorbent in the donor phase aqueous solution with sonication, (b) exposure to a magnetic field to collect sorbent that had adsorbed the analyte, and (c) solvent desorption of extracted PGN for GC-FID analysis. The work demonstrates the usefulness of MM-PCL-SPE in the rapid and sensitive monitoring of trace amounts of PGN in real samples. The limit of detection (LOD) and limit of quantification (LOQ) were 1.00 and 3.30ng/mL, respectively. The relative recoveries in real samples were adequate. Linearity was observed over a wide range of 2.2-10,000.0ng/mL in aqueous media and urine and 0.01-70.0μg/mL in blood serum. Graphical Abstract In this research new Fe3O4/poly(є-caprolactone) (PCL) magnetite microspheres were developed as an efficient sorbent for solid-phase extraction of progesterone hormone in biological and environmental matrices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call