Abstract

Magnetically responsive colloidal photonic crystals have been fabricated by using highly charged superparamagnetic Fe3O4 colloidal nanocrystal clusters (CNCs) as the building blocks. The colloids form chainlike structures with regular interparticle spacing of a few hundred nanometers along the external field so that the system strongly diffracts light. The diffraction wavelength can be tuned across the entire visible spectrum by simply changing the strength of the magnetic field. The fast and reversible response suggests great potential of these photonic materials in applications such as displays and sensors. Further modification of the Fe3O4 CNCs with silica coating allows the dispersion of the particles in nonaqueous solutions. The modified particles also self-assemble into ordered structures in alcohol solvents under an external magnetic field. Embedding droplets of such a colloidal solution in a polymer matrix produces solid composite materials with magnetically responsive optical properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.