Abstract

We investigated the low-temperature and high-field thermodynamic and ultrasonic properties of SrCu_{2}(BO_{3})_{2}, which exhibits various plateaux in its magnetization curve above 27T, called a magnetic Devil's staircase. The results of the present study confirm that magnetic crystallization, the first step of the staircase, occurs above 27T as a first-order transition accompanied by a sharp singularity in heat capacity C_{p} and a kink in the elastic constant. In addition, we observe a thermodynamic anomaly at lower fields around 26T, which has not been previously detected by any magnetic probes. At low temperatures, this magnetically hidden state has a large entropy and does not exhibit Schottky-type gapped behavior, which suggests the existence of low-energy collective excitations. Based on our observations and theoretical predictions, we propose that magnetic quadrupoles form a spin-nematic state around 26T as a hidden state on the ground floor of the magnetic Devil's staircase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.