Abstract

Tailored with superparamagnetic properties the magnetic nanocomposites have been thoroughly investigated in recent past because of their potential applications in the fields of biomedicine and bioengineering such as protein detection, magnetic targeted drug carriers, bioseparation, magnetic resonance imaging contrast agents and hyperthermia. Magnetic drug targeting has come up as a safe and effective drug-delivery technology, i.e., with the least amount of magnetic particles a maximum of drug may be easily administered and transported to the site of choice. In the present work novel magnetic drug-targeting carriers consisting of magnetic nanoparticles encapsulated within a smart polymer matrix with potential of controlled drug release is described. To make such magnetic polymeric drug-delivery systems, both the magnetic nanoparticles and antibiotic drug (ciprofloxacin) were incorporated into the hydrogel. The controlled release process and release profiles were investigated as a function of experimental protocols such as percent loading of drug, chemical composition of the nanocomposite, pH of release media and strength of magnetic field on the release profiles. The structure, morphology and compositions of magnetic hydrogel nanocomposites were characterized by FT-IR, TEM, XRD and VSM techniques. It was found that magnetic nanocomposites were biocompatible and superparamagnetic in nature and could be used as a smart drug carrier for controlled and targeted drug delivery.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.